Regulation of sulfate assimilation by nitrogen in Arabidopsis.
نویسندگان
چکیده
Using Arabidopsis, we analyzed the effect of omission of a nitrogen source and of the addition of different nitrogen-containing compounds on the extractable activity and the enzyme and mRNA accumulation of adenosine 5'-phosphosulfate reductase (APR). During 72 h without a nitrogen source, the APR activity decreased to 70% and 50% of controls in leaves and roots, respectively, while cysteine (Cys) and glutathione contents were not affected. Northern and western analysis revealed that the decrease of APR activity was correlated with decreased mRNA and enzyme levels. The reduced APR activity in roots could be fully restored within 24 h by the addition of 4 mM each of NO(3)(-), NH(4)(+), or glutamine (Gln), or 1 mM O-acetylserine (OAS). (35)SO(4)(2-) feeding showed that after addition of NH(4)(+), Gln, or OAS to nitrogen-starved plants, incorporation of (35)S into proteins significantly increased in roots; however, glutathione and Cys labeling was higher only with Gln and OAS or with OAS alone, respectively. OAS strongly increased mRNA levels of all three APR isoforms in roots and also those of sulfite reductase, Cys synthase, and serine acetyltransferase. Our data demonstrate that sulfate reduction is regulated by nitrogen nutrition at the transcriptional level and that OAS plays a major role in this regulation.
منابع مشابه
Effect of glucose on assimilatory sulphate reduction in Arabidopsis thaliana roots.
With the aim of analysing the relative importance of sugar supply and nitrogen nutrition for the regulation of sulphate assimilation, the regulation of adenosine 5'-phosphosulphate reductase (APR), a key enzyme of sulphate reduction in plants, was studied. Glucose feeding experiments with Arabidopsis thaliana cultivated with and without a nitrogen source were performed. After a 38 h dark period...
متن کاملComplex signaling network in regulation of adenosine 5'-phosphosulfate reductase by salt stress in Arabidopsis roots.
Sulfur-containing compounds play an important role in plant stress defense; however, only a little is known about the molecular mechanisms of regulation of sulfate assimilation by stress. Using known Arabidopsis (Arabidopsis thaliana) mutants in signaling pathways, we analyzed regulation of the key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase (APR), by salt stress. APR ...
متن کاملRegulation of Sulfate Assimilation in Tobacco Cells: EFFECT OF NITROGEN AND SULFUR NUTRITION ON SULFATE PERMEASE AND O-ACETYLSERINE SULFHYDRYLASE.
The effect of nitrogen and sulfur nutrition on sulfate permease and O-acetylserine sulfhydrylase was studied in tobacco cells.Sulfate transport rates increased 10-fold in cells transferred to sulfur-deficient B-5 medium. The addition of either sulfate or l-cysteine reduced transport 95 and 80%, respectively. The pools of sulfate, cysteine, glutathione, and methionine declined in sulfur-starved ...
متن کاملRegulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana.
Proton/sulfate cotransporters in the plasma membranes are responsible for uptake of the environmental sulfate used in the sulfate assimilation pathway in plants. Here we report the cloning and characterization of an Arabidopsis thaliana gene, AST68, a new member of the sulfate transporter gene family in higher plants. Sequence analysis of cDNA and genomic clones of AST68 revealed that the AST68...
متن کاملArabidopsis gls mutants and distinct Fd-GOGAT genes. Implications for photorespiration and primary nitrogen assimilation.
Ferredoxin-dependent glutamate synthase (Fd-GOGAT) plays a major role in photorespiration in Arabidopsis, as has been determined by the characterization of mutants deficient in Fd-GOGAT enzyme activity (gls). Despite genetic evidence for a single Fd-GOGAT locus and gene, we discovered that Arabidopsis contains two expressed genes for Fd-GOGAT (GLU1 and GLU2). Physical and genetic mapping of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 122 3 شماره
صفحات -
تاریخ انتشار 2000